If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-60x+784=0
a = 1; b = -60; c = +784;
Δ = b2-4ac
Δ = -602-4·1·784
Δ = 464
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{464}=\sqrt{16*29}=\sqrt{16}*\sqrt{29}=4\sqrt{29}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-4\sqrt{29}}{2*1}=\frac{60-4\sqrt{29}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+4\sqrt{29}}{2*1}=\frac{60+4\sqrt{29}}{2} $
| 3(y-4)=5(2y-1) | | -12x+39=-16x+36 | | z-7=(z/3+5) | | 18/81=22/x | | 3(3x-1)=213 | | D^3-8d^2+15d=0 | | 27/19=6/x | | 27/18=6/x | | 3x-5=-2x+13 | | 3(6+x)=6(3+1/2x) | | -3d+(-27)=-8d+(-2) | | 15x=45(300-x) | | x*x*x+2x=-1 | | x(x)(x)+2x=-1 | | 0.4x+0.7=0.6x-0.7 | | |x-5|+10=-2 | | x³-49x+120=0 | | 2x-0,2*x^2=80-4x | | 2/5•(5/4^x-5/6)=3x-1/6 | | 2x-0,2x^2=80-4x | | 3x-5x-11=-2x+9-11 | | 3x+8=2-1 | | 4(3-x)-2(3x+8)=140 | | x-2=-10;-8,-12 | | 3x5=16 | | 5(2-x)-4(3x+7)=120 | | 5(x-2)-(6x+2)-5(4x+2)=0 | | 2p+6=9 | | f(1.5)=(1.5)²-2(1.5)+2 | | (-4=x)=10 | | 9^x=162 | | 3(3x-9)+2(4x+10)=0 |